Тайна «небесной стрелы»
04.07.2006 12:54
…молнии на небесах, и всякий раз ее огонь кажется таинственным. Да и ученый мир подтвердит, что, как ни прытка наука, познавшая все от атомов до созвездий, перед феноменом молнии — электрического разряда, возникающего между грозовой тучей и поверхностью Земли — долго пасовала и она. В этой области исследований еще не прошел описательный период.

Стоило дождаться космической эпохи, чтобы узреть, что пылающая стрела метит не только в одинокие дубы или башни, но и летит ввысь. Лишь в 1989 году были впервые сфотографированы «спрайты» — слабо светящиеся молнии, вспыхивающие на доли секунды в верхних слоях атмосферы, примерно в 65-80 километрах от Земли. Эти молнии, окрашенные в синий или красный цвета, сверкают под аккомпанемент необычного — инфразвукового — грома. Наблюдения за ними удобно вести с околоземной орбиты. На снимках, сделанных из космоса, видны невероятной величины огненные столпы. Их диаметр порой достигает 90 километров, но сила свечения невелика, а потому с поверхности Земли их не увидать. Спрайты нередко сравнивают со сполохами полярного сияния. Но если те возникают при проникновении из космоса высокоэнергетичных протонов и электронов, то для спрайтов источником энергии становятся грозовые разряды. Очевидно, при вспышке молнии распространяется электромагнитный импульс, возбуждающий слабое свечение молекул воздуха. Многочисленные исследования показали, что спрайты почти всегда сопровождают грозу.

Изучение молний — достаточно сложный и дорогостоящий процесс. Как полемически заявил один из исследователей, «мы находимся в совершенно неизведанной области». Вопросов накопилось немало. Правда ли, что в грозу молнии не такие, как в град? Верно ли, что бывают супермолнии, когда сила тока превышает 300 тысяч ампер (обычно она в полтора-три раза ниже)? А можно ли использовать молнию как оружие массового поражения? И не работал ли Леонардо да Винчи над созданием такого оружия, как пишет Льюис Пэрдью, автор книги «Наследие да Винчи»? А зависит ли активность молний от загрязнения окружающей среды, или, говоря иными словами, сверкают ли молнии над крупными городами чаще, чем над сельской глубинкой?

К слову, по данным трехлетних наблюдений сотрудников Национального института космических исследований Бразилии, разряды молний над мегаполисами происходят почти в два раза чаще, чем над их окрестностями, но этот вывод требует подтверждения. Год назад в Австрии стартовал крупный международный проект, в котором участвуют специалисты из 18 стран-членов ЕС, а также Украины, России, США, Японии и Канады. Возможно, нам откроются новые тайны молний.

Кстати, лишь недавно подтвердилось, что удары молний сопровождаются всплесками рентгеновского и гамма-излучения (впервые подобная гипотеза была высказана лет 80 назад). С 2002 года с околоземной орбиты ведется наблюдение за слабыми источниками гамма-излучения на нашей планете. Их активность длится от 0,2 до 3,5 миллисекунды. По некоторым оценкам, за сутки может появляться до полусотни таких источников.

Подобный феномен сопровождает привычные нам грозы. Ведь мощное напряжение возникает не только между грозовой тучей и землей, но и между тучей и лежащими выше слоями атмосферы. На высоте от 20 до 80 километров может генерироваться напряжение до 20 миллионов вольт. Электроны, мчащиеся ввысь, порождают цепную реакцию. Сталкиваясь с молекулами воздуха, они вызывают их ионизацию. Постепенно возникает лавина электронов, летящих в сторону разреженной ионосферы. Там происходит все меньше соударений, и скорость электронов приближается к световой. Если они все же сталкиваются с другими частицами, то наблюдается излучение в рентгеновском или гамма-диапазоне.

Молнии рассекают атмосферу не только Земли, но и Венеры, Юпитера, Сатурна. Так, в конце января 2006 года межпланетная станция «Кассини» наблюдала за самой мощной грозой на Сатурне за всю историю наблюдений и сфотографировала эту космическую бурю.

К Земле же огненные стрелы молний летят со скоростью всего в двадцать раз меньше световой. В среднем вспышка молнии длится 30 миллисекунд. Ее мощность в это мгновение достигает 1012 ватт, то есть в тысячи раз превосходит мощность небольшой атомной электростанции. В канале молнии воздух разогревается до 30 тысяч градусов — там в пять раз горячее, чем на поверхности Солнца. Разогретая плазма моментально расширяется и порождает мощную звуковую волну — гром.

Четыре года назад в НАСА, используя данные спутниковой съемки, впервые составили «Всемирный атлас молний». Согласно ему, чаще всего огненные вспышки разрезают небо над тропической Африкой — здесь на квадратный километр приходится более полусотни молний в год. Чуть реже молнии сверкают в Гималаях и американском штате Флорида. У нас, в Европе, поспокойнее: в среднем мы становимся свидетелями гроз 10-30 раз в год. Так что мы вряд ли можем сейчас вполне ощутить тот ужас, что испытывали, например, древние греки или хетты перед своими богами-громовержцами, готовыми покарать любого преступника стрелой молнии — небесным огнем.

Со времен Бенджамина Франклина мы научились защищаться от прямых ударов молний с помощью громоотвода. Но и в наши дни по их вине порой выходят из строя трансформаторы и подстанции, а уж попадание молнии в склад химикатов или боеприпасов может привести к непоправимой катастрофе.

Недавно появился радикально новый способ борьбы с «небесными стрелами». Американский инженер Дуг Палмер предложил использовать водометы — направлять вверх струи подсоленной воды высотой до 300 метров. Молния, проходя водяной столп, будет уходить в землю. Подобные водометы можно размещать близ стадионов, где проходят соревнования или концерты. Вместо соли, повышающей электропроводность воды, можно использовать растворимые полимерные добавки.

Кстати, ряд американских компаний выпускают «детекторы молний» — приборы размером с мобильный телефон, которые, зафиксировав характерные электрические шумы в радиусе 60 километров, подают громкие сигналы, сообщая, что надо искать укрытие.

Если же непогода застала вас, например, за городом, где нет никакого укрытия, избегайте холмов и одиноко стоящих деревьев — лучше спрячьтесь в ложбинку или канаву, присядьте на корточки, плотно сомкнув ноги. К слову, часто люди становятся жертвами молний, когда гроза стихнет и кажется, что можно покинуть укрытие. На самом деле опасность поражения молнией сохраняется еще минут десять после того, как пройдет ливень. Конечно, вероятность угодить под молнию чрезвычайно мала, но все же она выше, чем, например, шансы выиграть главный приз, предлагаемый организаторами различных лотерей.

Лучше всего в грозу сидеть дома, посматривая в окно на то, как потемневшее небо режут вкривь и вкось золоченые лезвия молний. Но и тут — с кем-то это бывает! — прямо к вам, проникая сквозь стекло, может вплыть огненный шар.

Природа шаровой молнии таит немало загадок. При описании этого редкостного феномена ученые вынуждены полагаться лишь на разрозненные свидетельства очевидцев, из которых явствует, что эта молния представляет собой матовый шар оранжевого, желтого или красного цвета, светящийся как лампочка в 60 ватт, что величиной она бывает то с апельсин, то с футбольный мяч, что она парит, перемещаясь со скоростью пешехода или бегуна, и что ее наблюдают от десятка секунд до минуты. Эти скупые рассказы да горстка фотографий — вот все, чем располагает наука.

Как полемично заявил один из ученых, мы знаем о шаровой молнии не больше, чем древние египтяне ведали о природе звезд. Но все же мы хотя бы представляем себе параметры этой молнии — достаточно хорошо представляем, чтобы признать ложными самые сенсационные сообщения, например, о мощных взрывах шаровых молний, разрушавших целые здания. В среднем из тысячи описаний подобных молний можно по пальцам одной руки пересчитать число встреч с ними, закончившихся трагически, да и то из этих рассказов не ясно, пострадали ли люди именно от молнии или причина была в чем-то другом, отмечал российский исследователь шаровой молнии И.П. Стаханов.

Что же касается ее природы, то на сегодняшний день имеется более ста гипотез, претендующих на объяснение физической сути шаровой молнии. Однако ни одна из них не подтвердилась с достаточной степенью надежности. Кто говорит, что шаровая молния — это облачко плазмы, кто видит в ней миниатюрную черную дыру, а кто — стянутое в узел энергетическое поле. А самой абсурдной я бы признал догадку одного «теоретика», который уверовал, что шаровая молния возникает, когда линейной молнии случится попасть в летящую птицу и испепелить ее — лишь огненное облачко еще несколько секунд парит в прежнем направлении.

Исследования шаровой молнии ведутся уже нескольких веков. В свое время получить ее искусственным путем пытались и Н. Тесла, и П.Л. Капица. В последние годы у специалистов вызвали интерес некоторые новые эксперименты.

В 2000 году журнал «Nature» представил работу новозеландских химиков Джона Абрахамсона и Джеймса Динниса. Они показали, что при ударе молнии в почву, содержащую силикаты и органический углерод, образуется клубок волокон кремния и карбида кремния. Эти волокна медленно окисляются и начинают светиться — вспыхивает огненный шар, разогретый до 1200-1400°С. Обычно шаровые молнии бесшумно тают, но бывает, что и взрываются. По мнению Абрахамсона и Динниса, такое случается, если начальная температура клубка чересчур высока. Тогда окислительные процессы протекают ускоренно, что и приводит к взрыву. Впрочем, эта гипотеза не может описать все случаи наблюдения шаровых молний.

В 2004 году российские исследователи А.И. Егоров, С.И. Степанов и Г.Д. Шабанов описали схему установки, на которой им удавалось получать шаровые разряды, названные ими «плазмоидами» и напоминавшие шаровую молнию. Опыты вполне можно было воспроизвести, вот только существовали плазмоиды не более секунды.

В феврале 2006 года пришло сообщение из Тель-Авивского университета. Физики Владимир Дихтярь и Эли Йерби наблюдали в лаборатории светящиеся газовые шары, во многом напоминающие те странные молнии. Генерируя их, Дихтярь и Йерби разогревали в микроволновом поле мощностью 600 ватт кремниевый субстрат, пока тот не испарялся. В воздухе возникал желтовато-красный шар диаметром около 3 сантиметров, состоявший из ионизованного газа (как видите, заметно меньше шаровой молнии). Он медленно плавал в воздухе, сохраняя свою форму до тех пор, пока установку, создававшую поле, не отключали. Температура поверхности шара достигала 1700°С. Подобно обычной молнии, он притягивался к металлическим предметам и скользил вдоль них, а вот проникнуть сквозь оконное стекло не мог. В опытах Дихтяря и Йерби стекло лопалось, соприкоснувшись с огненным шаром.

Очевидно, в природе шаровые молнии порождены не микроволновыми полями, а электрическими разрядами. В любом случае, израильские ученые продемонстрировали, что исследование подобных молний допустимо в лабораторных условиях и что результаты экспериментов можно использовать при создании новых технологий обработки материалов, в частности, для нанесения сверхтонких пленок.

На Земле происходит около 32 миллиардов ударов молний в год, ущерб от которых оценивается в 5 миллиардов долларов. Только в США от молний ежегодно страдает около 1000 человек, двести из которых гибнет. Интересно, что 86 % жертв — мужчины. То ли у них физиология особенная, то ли они бывают на свежем воздухе чаще женщин, проводящих большую часть жизни дома.

По статистике, молнии попадают в самолеты, в среднем, три раза в год, но в наши дни это редко приводит к серьезным последствиям. Современные авиалайнеры теперь достаточно хорошо защищены от удара молнии. Самая тяжелая авиационная катастрофа, вызванная молнией, произошла 8 декабря 1963 года в штате Мэрилэнд, США. Тогда попавшая в самолет молния проникла в резервный бак горючего, что привело к воспламенению всего самолета. В результате этой катастрофы погибло 82 человека.

Inauka